Mammalian diet as indicator of landscape modification
DOI:
https://doi.org/10.32870/jbf.v5i10.111Keywords:
food, medium-sized mammals, niche, protected areaAbstract
The modification of primary environments due to human activities imposes different challenges on animal species living in sympatry, which may respond with behavioral and ecological adjustments to survive. Omnivorous mammals, unlike carnivores or herbivores, require special attention due to their constant intake of diets based on vertebrates, invertebrates, and plants. Strategies to obtain food may vary among omnivore species according to the degree of habitat disturbance. For this reason, there is a need to understand how different omnivores respond, in terms of feeding ecology, when subjected to the same anthropogenic pressures within a shared habitat. In this study, we examined the diet of sympatric medium-sized mammals living in a coniferous forest in Veracruz, Mexico, which has been subject to anthropogenic pressures. We focused on ringtail (Bassariscus astutus), common opossum (Didelphis marsupialis) and gray fox (Urocyon cinereoargenteus). We predicted that dietary patterns would differ between habitat types (conserved vs disturbed) and seasons (dry and rainy), being the species with a more specialized diet more affected by landscape modification. We collected and examined scats of the three mammal species. Overall, the most common food item consumed was plants, followed by invertebrates and, to a lesser extent, vertebrates. Food intake frequency was similar between conserved and disturbed zones; however, we recorded a higher invertebrate intake during the rainy season. Bassariscus astutus and D. marsupialis showed a higher frequency of plant intake, followed by vertebrate and invertebrate items, whereas in U. cinereoargenteus, plant and vertebrate items showed equal frequency, followed by invertebrates. Considering each species, the type of consumed food item differed among species and between sampled areas, and an interaction between species and seasons was also found.
Downloads
References
Aranda, M. (2012). Manual para el rastreo de mamíferos silvestres de México. Comisión Nacional Para el Conocimiento y uso de la Biodiversidad (Conabio).
Balestrieri, A., Remonti, L., Saino, N., & Raubenheimer, D. (2019). The ‘omnivorous badger dilemma’: towards an integration of nutrition with the dietary niche in wild mammals. Mammal Review, 49(4), 324-339. https://doi.org/10.1111/mam.12164
Bateman, P. W., & Fleming, P.A. (2012). Big city life: carnivores in urban environments. Journal Zoology, 287(1), 1-23. https://doi.org/10.1111/j.1469-7998.2011.00887.x
Blüthgen, N., Gebauer, G., & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia, 137(3), 426-435. https://doi.org/10.1007/s00442-003-1347-8
Carbone, C., Mace, G. M., Roberts, S., & Macdonald, D.W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402(6759), 286-288. https://doi.org/10.1038/46266
Clarke, K. R., & Gorley, R. N. (2006). Primer v6: user manual/tutorial. Primer-e.
Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure. Austral Ecology, 18(1), 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Cortés-Gutiérrez, M. A., Álvarez, T. A. A., & Sarabia, M. S. (2019). Mamíferos silvestres del bosque de encino en la Sierra de los Agustinos en el Municipio de Acámbaro, Guanajuato, México. Revista de Zoología, 30(1), 20-31. https://www.redalyc.org/journal/498/49858451006/49858451006
Cortés-Marcial, M., & Briones-Salas, M. (2014). Diversidad, abundancia relativa y patrones de actividad de mamíferos medianos y grandes en una selva seca del Istmo de Tehuantepec, Oaxaca, México. Revista de Biología Tropical, 62(4), 1433-1448. https://doi.org/10.15517/rbt.v62i4.13285
Cunningham, S. C., Kirkendall, L., & Ballard, W. (2006). Gray fox and coyote abundance and diet responses after a wildfire in central Arizona. Western North American Naturalist, 66(2), 169-180. https://www.jstor.org/stable/41717511
Dinno, A. & Dinno, M. A. (2017). Package ‘dunn. test’. CRAN Repos 10: 1–7. https://cran.radicaldevelop.com/web/packages/dunn.test/dunn.test.pdf
Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B., & Smith, A. L. (2013). Conceptual domain of the matrix in fragmented landscapes. Trends in Ecology & Evolution, 28(10), 605-613. https://doi.org/10.1016/j.tree.2013.06.010
Elbroch, M., & McFarland, C. (2003). Mammal tracks and signs: A guide to North American specie.s Stackpole Books.
Fahrig, L., Arroyo-Rodríguez, V., Bennett, J. R., Boucher-Lalonde, V., Cazetta, E., Currie, D. J., Eigenbrod, F., Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper N., Martin, A. E., Martin, J. L., Metzger, J. P., Morrison, P., Rhodes, J. R., Saunders, D., Simberloff, D., Smith, A., Tischendorf, L., Vellend, M., & Watling, J. I. (2019). Is habitat fragmentation bad for biodiversity?. Biological Conservation, 230, 179-186. https://doi.org/10.1016/j.biocon.2018.12.026
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Fritsch, C., Coeurdassier, M., Giraudoux, P., Raoul, F., Douay, F., Rieffel, D., Vaufleury, A. & Scheifler, R. (2011). Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. Plos One, 6(5), e20682. https://doi.org/10.1371/journal.pone.0020682
Gámez-Virués, S., Perovi?, D. J., Gossner, M. M., Börschig, C., Blüthgen, N., De Jong, H., Simons, N. K., Klein, A. M., Krauss, J., Maier, G., Scherber, C., Steckel, J., Rothenwohrer., Steffan-Dewenter, I., Weiner, C. N., Weisser, W., Werner, M., Tescharntke, T. & Westphal, C. (2015). Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 6(1), 85-68. https://doi.org/10.1038/ncomms9568
Gorczynski, D., Hsieh, C., Luciano, J.T., Ahumada, J., Espinosa, S., Johnson, S., Rovero, F., Santos, F., Andrianarisoa, M. H., Astaiza, J. H., Jansen, P. A., Kayijamahe, C., Moreira-Lima, M. G., Salvador, J., & Beaudrot L. (2021). Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proceedings of the Royal Society B, 288(1945), 20202098. https://doi.org/10.1098/rspb.2020.2098
Guerrero, S., Badii, M. H., Zalapa, S. S. & Flores, A. E. (2002). Dieta y nicho de alimentación del coyote, zorra gris, mapache y jaguarundi en un bosque tropical caducifolio de la costa sur del estado de Jalisco, México. Acta Zoológica Mexicana, 86,119–137. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372002000200007&lng=es&nrm=iso>. ISSN 2448-8445.
Hagar, J. C. (2007). Wildlife species associated with non-coniferous vegetation in Pacific Northwest conifer forests: a review. Forest Ecology and Management, 246(1), 108-122. https://doi.org/ 10.1016/j.foreco.2007.03.054
Hernández, S. H. (2016). Diversidad de mamíferos en el Área de Conservación Privada “Bosque de los Murmullos” Municipio de Perote Veracruz, México. Xalapa, Veracruz [BSc. Thesis]. Universidad Veracruzana.
Heroldová, M., Bryja, J., Zejda, J., & Tkadlec, E. (2007). Structure and diversity of small mammal communities in agriculture landscape. Agriculture, Ecosystems & Environment, 120(2-4), 206-210. https://doi.org/10.1016/j.agee.2006.09.007
Jones, K. E., & Safi, K. (2011). Ecology and evolution of mammalian biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1577), 2451-2461. https://doi.org/10.1098/rstb.2011.0090
Li, X., Hu, W., Bleisch, W. V., Li, Q., Wang, H., Lu, W., Sun, J., Zhang, F., Ti, B., & Jiang, X. (2022). Functional diversity loss and change in nocturnal behavior of mammals under anthropogenic disturbance. Conservation Biology, 36(3), e13839.https://doi.org/10.1111/cobi.13839
Magioli, M., Moreira, M. Z., Fonseca, R. C. B., Ribeiro, M. C., Rodrigues, M. G., & Ferraz, K. M. P. M. D. B. (2019). Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proceedings of the National Academy of Sciences, 116(37), 18466-18472. https://doi.org/10.1073/pnas.1904384116
Magioli, M., Ferraz, K. M. P. M. D. B., Setz, E. Z. F., Percequillo, A. R., Rondon, M. V. D. S. S., Kuhnen, V. V., da Silva-Canhoto, M. C., Almeida dos Santos, K. E., Zukeran-Kanda, C., De Lima-Fregonezi, G., Alves do Prado, H., Ferreira, M. C., Ribeiro, M. C., Schmidt-Villela, P. M., Coutinho, & L. L. Rodrigues, M. G. (2016). Connectivity maintain mammal assemblages functional diversity within agricultural and fragmented landscapes. European Journal of Wildlife Research, 62(4), 431-446. https://doi.org/10.1007/s10344-016-1017-x
Méndez-Ramírez, V., & Serna-Lagunes, R. (2024). Urocyon cinereoargenteus predating to Canis lupus familiaris in an anthropized tropical environment. Therya Notes, 5, 51-55. https://doi.org/10.12933/therya_notes-24-149
Morales, G. C., Peña, N. G., y List, R. (2008). Uso de recursos del cacomixtle Bassariscus astutus y la zorra gris Urocyon cinereoargenteus en una reserva urbana de la ciudad de México. En C. Lorenzo, E. Espinoza. y J. Ortega (Eds.) Avances en el estudio de los mamíferos de México II, (pp. 377-390). Asociación Mexicana de Mastozoología El Colegio de la Frontera Sur, https://doi.org/10.5281/zenodo.16753859
Nakagawa, M., Hyodo, F., & Nakashizuka, T. (2007). Effect of forest use on trophic levels of small mammals: an analysis using stable isotopes. Canadian Journal of Zoology, 85(4), 472-478. https://doi.org/10.1139/Z07-026
Nedd, R., Light, K., Owens, M., James, N., Johnson, E., & Anandhi, A. (2021). A synthesis of land use/land cover studies: Definitions, classification systems, meta-studies, challenges and knowledge gaps on a global landscape. Land, 10(9), 994. https://doi.org/10.3390/land10090994
Pasch, M. V., & Kattán, G. A. M. (2019). Dieta de la zorra gris (Urocyon cinereoargenteus) y su posible importancia en la dispersión de semillas de ciprés (Juniperus comitana) en Huehuetenango, Guatemala. Revista Mexicana de Mastozoología (Nueva Época), 9(1), 66-71. https://doi.org/10.22201/ie.20074484e.2019.1.1.270
Picazo, G. E. R. C., & García-Collazo, R. (2019). Comparación de la dieta del cacomixtle norteño, Bassariscus astutus de un bosque templado y un matorral xerófilo, del centro de México. Biocyt: Biología, Ciencia y Tecnología, 12(45), 834-845. http://revistas.unam.mx/index.php/biocyt
Pineda-Munoz, S., & Alroy, J. (2014). Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 281(1789), 20141173. https://doi.org/10.1098/rspb.2014.1173
Prugh, L. R., Hodges, K. E., Sinclair, A. R., & Brashares, J. S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105(52), 20770-20775. 20770–20775. https://doi.org/10.1073/pnas.0806080105
Qashqaei, A. T., Ghaedi, Z., & Coogan, S. C. (2023). Diet composition of omnivorous Mesopotamian spiny?tailed lizards (Saara loricata) in arid human?altered landscapes of Southwest Iran. Ecology and Evolution, 13(2), e9783. https://doi.org/10.1002/ece3.9783
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Reuter, D. M., Hopkins, S. S., & Price, S. A. (2023). What is a mammalian omnivore? Insights into terrestrial mammalian diet diversity, body mass and evolution. Proceedings of the Royal Society B, 290(1992), 20221062. https://doi.org/10.1098/rspb.2022.1062
Rojas-Sánchez, J. V., Sánchez-Cordero, V., Coates, R., Hernández-Jauregui, M., & Flores-Martínez, J. J. (2023). Philander opossum As Prey of Didelphis marsupialis in a Rainforest in México. Therya Notes, 4, 177-182. https://doi.org/10.12933/therya_notes-23-126
Silva-Pereira, J. E., Moro-Rios, R. F., Bilski, D. R., & Passos, F. C. (2011). Diets of three sympatric Neotropical small cats: Food niche overlap and interspecies differences in prey consumption. Mammalian Biology, 76(3), 308-312. https://doi.org/10.1016/j.mambio.2010.09.001
Singer, M. S., & Bernays, E. A. (2003). Understanding omnivory needs a behavioral perspective. Ecology, 84(10), 2532-2537. https://doi.org/10.1890/02-0397
Smith, P. N., Cobb, G. P., Godard-Codding, C., Hoff, D., McMurry, S. T., Rainwater, T. R., & Reynolds, K. D. (2007). Contaminant exposure in terrestrial vertebrates. Environmental Pollution, 150(1), 41-64. https://doi.org/10.1016/j.envpol.2007.06.009
Tucker, M. A., Böhning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B., Alberts, S. C., ... & Mueller, T. (2018). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 359(6374), 466-469. https://doi.org/0.1126/science.aam9712
Weather Spark. 2020. Climate and Average Weather Year-Round in Perote, Mexico. Cedar Lake Ventures, Inc. https://es.weatherspark.com/y/7624/Clima-promedio-en-Perote-M%C3%A9xico-durante-todo-el a%C3%B1o#Sections-Sources. Accessed 21 Jan. 2025.
Weideman, E. A., Slingsby, J. A., Thomson, R. L., & Coetzee, B. T. (2020). Land cover change homogenizes functional and phylogenetic diversity within and among African savanna bird assemblages. Landscape Ecology, 35(1), 145-157. https://doi.org/10.1007/s10980-019-00939-z
Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia, 50(3), 296-302. https://doi.org/10.1007/BF00344966
Wong-Smer, J. R., Soria-Díaz, L., Horta-Vega, J. V., Astudillo-Sánchez, C. C., Gómez-Ortiz, Y., & Mora-Olivo, A. (2022). Dieta y abundancia relativa de la zorra gris Urocyon cinereoargenteus (Carnivora: Canidae) en el Área Natural Protegida Altas Cumbres, Tamaulipas, México. Acta Zoológica Mexicana, 38. https://doi.org/10.21829/azm.2022.3812426
Yan, Y., Jarvie, S., Zhang, Q., Han, P., Liu, Q., Zhang, S., & Liu, P. (2023). Habitat heterogeneity determines species richness on small habitat islands in a fragmented landscape. Journal of Biogeography, 50(5), 976-986. https://doi.org/10.1111/jbi.14594
Zúñiga, A. H., Rau, J. R., Fuenzalida, V., & Fuentes-Ramírez, A. (2020). Temporal changes in the diet of two sympatric carnivorous mammals in a protected area of south–central Chile affected by a mixed–severity forest fire. Animal Biodiversity and Conservation, 43(2), 177-186. https://doi.org/10.32800/abc.2020.43.0177
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Emilio Alfonso Suárez-Domínguez, JULLIANA WELLEN BARRETTO MARCELINO, Rodolfo Martínez-Mota

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

